Curvature is a geometrical property of a curve. It is basically a measure of how Curveq ,
curve is. Hence the curvature depends only on the shape of the concerned curve. For examp,
large circles have smaller curvature as compared to the small circles which bend more Sharp]yi
Again a straight line has zero curvature. In this chapter various formulae of curvature g,
established based on different analytical forms of curves. The radius of curvature, centre of
curvature, circle of curvature, evolute of a curve are also discussed.

The curvature of a curve at a point is the rate of change of direction of the curve at that
point with respect to the arc. In other words the curvature of a curve is the “rate at which

the curve curves”.
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With reference to the co-ordinate axes (Ox, Oy) let an
arc of a given curve y = f{x) be measured from a fixed point
A on the curve. Let P and Q be two neighbouring points on
the curve y = flx). Draw two tangents KPL and MQN at P
and Q respectively which intersect at T and meet x-axis at
K and M. Let arc AP =s and arc AQ = s + As, 50 that arc
PQ = As (see Fig. 8.1). Let tangents at P and Q make angles
w and y + Ay with the positive direction of x-axis, Then
the angle ZNTL between the tangents is called the angle
of contingence or the angle of incidence of the arc PQ.
So the angle of contingence of any arc is just the difference
of the angles which the tangents at its extremitjeg make
with any given fixed straight line.
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The ratio % is called the average curvature of the arc PQ at the point P. As the point

Q — P along the curve, the limiting valye : clal-lflp %’ = Ho% [since As — 0, as Q — PI
_ ay
T ds

is called the curvature of the curve at the point P.

“'Ihe reciprocal of curvature at P j . » %8— is called theradlusofcurvature of the concemed
;em-veatPanddenotedbyp, S _7 BRI e

(say)
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Let the two normals at Points P and Q close to each
other meet at C’ on the normal at p. Now we make
Q — P along the curve, consequently the intersecting
point of normals C’ approaches to a definjte point C(say)
on the normal at P (see Fig. 8.2). Thus, in the limiting
sense C is the ultimate point. of intersection of two
normals indefinitely close together. The length PC is the
radius of curvature of the given curve at the point P. ' -

i

Let APQ be a circle with centre at C and radius a. P, Q are two neighbouring points on
the circle. Angle between tangents at P and Q is

Ay 8o that angle between normals at P and Q is
also Ay at the centre C(see Fig. 8.3).
Now let arc AP = 8, arc AQ = s + As, so that

¢ PQ = As = aAy. Therefore, the curvature of the
Circle at the point P

= lim (-A—'E)= lim (ﬂ-}% [since As = aAy]

4y-0\ As | ay-0{aAy
d
= Eg , the curvature = L

a

Stheradius of curvature of the circlewithradius

< ) . d ’
@ gt any point P on the circle is ﬁ =‘a’,



A. For the Intrinsic Equation : s = f(y)

(@) Various Formulae connected to Radius of Curvatyry)

ds _ . As

. = —= ] g

We have already derived the formula p dy AY—0 AW |

where p is the radius of curvature at any point of the concerned cyry, ang| !

small arc length between two neighbouring points on the curve and Ay, t, sm .
d

between two tangents drawn at the said two neighbouring points. l g,

Note

The above formula is helpful, if the equation of the curve is given in the intripg;, i
g B " Loy,

s=fy).. ; o

B Illustration-1 : For a catenary s = ¢ tany, we have by Formula (1) p = 8 _ ol
y Ty
is the radius of curvature at any point on the curve.
. 1 |
Consequently, the curvature = - T o= 5 = 2 = ; ,
P csec’y c(l+tan“y) c(1+ s ) §% + ¢

which is the rate of its deflection at any point on the curve.

B. For the equations : x = x(s) and y = y(s)
We have the following relations : |

; d, dx :
smy = %,cosw= —;,tanw: %

Differentiating first two relations with respect to é, we have

2.
cosw%—f—=%—s% and—sinw%_if',

Squaring and adding we get

2 2 2
d_!}l 9 .0 _ dzy d2x
(ds](cos YV + sin l,(l)—[&—? + 32

2 2
1 d2y d?x ds
— | —— + — =
~ (%) - (5 )] e - 2]
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|I‘ormulae (2) - (4) are smtable
’yzy(s) f i

C. For the Carteslan Equatlon ¥ = f(x)

Differentiating the relation tany = <

. d d2
with respect to x we get sec2y 2¥. _ 2 Y
p e g "4 a2

dx ds dx pcosw

[since tany =

1 d?% .
Thus secdy-— =22  [using (4a)]
"4 = g2 ng \
2)2
3 dy
secly (1+tan2w)2 {1+(0'1) }
Pt T T A
dx? dx? do®
est) 2
1+y1 dy d’y
= =27 40
=|P= g [yl dx’yZ dx2 ]

.. (3

. (4a]

dy

dx

--- (B)
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D. For the Cartesian Equation : x = g(y)

: . d
If the tangent at a point to the curve becomes parallel to y-axis, y, i.e., &% be

infinity, so formula (5) fails., Further if eqﬁation of the curve be given in the
x = g(y), we will use following formula [by interchanging x and y in formula (5)],

E. For the Implicit Equation : fix, y) = 0
If the equation of the curve be given as flx, y) = 0, i.e., as implicit function

%f (x, ¥) = f,(x, y) # 0, we have

% =y =-— ;—" - We differentiate it w.r.t x partially and obtain
¥y

fox + 2fy- ¥4 +f”y§ +fys =0 [assuming f,,, = i
Thus substituting the values of y; and y, in formula (5) we get

et | (4] e |
pP= o iy L p Yyl = p- f f2‘_2 2
f#+2fxy(—-~fi-)+fyy(-;y) ’ xx Ly fxyfxfy"'fyyfx

(assuming the denominator in the formula (7) does not vanish at the conc
F. For the Parametric Equations ; x = @),y =g

If the equation of the curve be given as 4
pParametric : L — g(¢), whe
t be the parameter. ' equations : x = fiz), y = g(t)

erned point



e dx d
Then ' =ft) = T and y = g/(t) = 2,

dy ¥ : d(dy) dt
sothat y; = == =L and y, = 42 . 4 [dy) - _(_y]_

dx x' de?  dx\dx dt\dx ) dx
2
_ xfyﬂ_y!x” .-:_l_ "y izl and x” _ ﬂ
x? [y dt? dt?
2
. (x;z +y12)2 (8)
Therefore, on using formula (5), we get | p = a7 s

[assuming the denominator in the formula (8) does not vanish at the concerned point
and suffixes denote order of differentiation with respect to “t”].

B Illustration-4 : The parametric equation of the parabola y® = 4ax is x = at?, y = 2at. The
radius of curvature of the parabola at (a, 2a) i.e., at t = 1 can be evaluated as follows :

, _ dx _ , d’x , dy , d?
X = dt —2at,x = dt2 —%Mdy—a—za, —-d—--O
2 2 = 2 g 3 5
’ AY) 215 o 5
Thus: P(G, 2a) = plt=l= (x il ) = {( t)” +(2a) }2 = 2a(t2 -i-l)2 1=22q
xry”_yfxu i -—432 . t=1 .

G. For the Polar Equation : r = (0)

If the equation of the curve is given as Ploar equation r =

A6), then the radius of
curvature p takes the following form

— | 2 2)% =£ =d_2r_
" lﬂiztig_nhll'[rl g8 oy d92] -+ (9)

(assuming the denominator in (9) does not vanish at the concerned point)
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B Tllustration-5 : Suppose the polar e
curvature at ( 2) can be found out as

rl
2 "
dr d7rr SR
= — == 0, ry = e =~ @acos
T Bt <
Thus, at(o 2)7‘ Orl-—-aandrg
(,-2.4.,1)2 @ a i ﬂ b Q;‘
pP= 2 3 - 2:--- Wt 3
rE+2n -~y | 2% 120N CH .

H. For the Polar Equatlon us= f(e)

by e l-‘n

(u+u1)‘ u-‘—i-'iu dﬁu:‘&;ﬂ
3(u+u2) SR do 0% 1hY

[assuming the denominator in (10) dqeq ¢
L. For the Pedal Equation : p = f(r)

Here y = 6+ ¢,

e dr

sm¢— r?d;,cos¢- z,

tang = r%% and p =rsing [seeFILg 'l'-
= -3% -sm¢+rcos¢i?-

p:

=90 drd¢
ds dr
r(2,8) dv_ 1
'(d:,-*ds B i
= |p=rdr
o

[ Illustration-ﬁ ¢ The radius of
r* = a®p be given by

3 3 o

dr a a adr
== =T e e A 3 :

p=r dp I [smee 4r T |

-4 . -
J. For the Tangential Polar Equation : psg ()
dp dpdrds dp_ o il

= E-coatp-_( ) [smcap!_rd;' '

A YR n
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2., (9P

dp d’p dy
dy dy? dp

= 2p + 2

= |p=p+

2

d”p

—

dy

2

dr
dp

= 2p [by differentiating with respect to p]

.. (12)

@ lllustration-7 : For the curve p = a(1 + siny) [tangential polar equation], we have

dp

— = acosy =

dy

= p+

asiny = a — p [since p = a + asiny]

=a =>p=a,

Hence the radius of curvature is a.

e
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the curvatures of the curve and the circle at the point.of con(-'.a
cceptable to describe the curvature of a ;

oc Fig: 8.6). Accordingly,
(s same. It is therefore a

at a given point with
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Let C(X, ¥) be the centre of curvature corresponding any point P(x, y) on the curve

fix, y) = 0, we have the equation of the normal at P(x, y) is (Y — Y)y1 + X = x) = 0 [where
@)
N7 4x

Since centre of curvature C(%, ¥) lies on the normal, so we get

G-+ (X -2)=0 2% -x=-(y —y)y, .. (18)
Hence PC = p[radius of curvature at P(x, y)]
. - C gy
=>P02=p2=>(§—x)2+(§-y)2=pz=(—l%i |
1+ y2)8 : Y2 } 399 ' .
=3 -2+ -y?2= —%— [using (18)]
2
98 S———
_ b 1+yf :
= -y21 +ydH = (——2—)
2 V2 2 ,
ﬁi—y:ﬂ:i:yq.ﬂl_ ' - ‘ ...(19)
Y2 Y2
Now from (18), ¥ —x = - (1.';3'1)yl o
2 Wy
SE=x- Ltin | ' .. (20)
g + o ! ,
From (19) and (20) we get the formulae for centre of curvature as follows :
5 _
Fag- n+sD) 5 _ ., 1+

~ LA 2



£ 10 ] runagamental mauicinasier e

O Evolute
Let P(x, y) be any point on a given curve and C &, y) be the centre of curvature gt p
P moves along the curve, the point C also changes its position. Thus, the locus of C (g,
ute of the given curve.

positions with the movement of P) is called the evol
The given curve is sometimes called an involute to the evolute so obtained.

We will further discuss Evolute and Involute in Envelopes (Chapter 10) with diy,
perspectives. erem

Ay
erg
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_BD Find the radius of curvature at the point (8, y) on the following Curveg,

n vy
(1)3-8asm2w (u)s-alogtan(4 2)

—_—
: . oY _ o085 X

Solution (i) Here equation of the curve is s = 8a sin” = = 4a (1 e s )

Now Differentiating with respect to y, we have

% = m[m%m%) - % sin £
Therefore, the radius of curvature is p = L dpay. sin ¥ .
dy" 3~ 3

(ii) Here equation of the curve is s = a log tan (%"L%) .

Now differentiating with respect to y, we get

ds

dy ~ % :lz v 'Secz(%+12,—)'%=a' . = = = a secy

tan(—;+-—2-) 28111(%4—-—2“1)008(%-{-12’-) Bin('g‘+W)

Therefore, the radius of curvature is p = L asecy
= dw |
EE—
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m Find the radius of curvature at the point (3, 4) on the curve xy = 12.

[CU 2008]
solution - Here the equation of the curve is xy = 12 or y = 22 .. (1)
‘ X
Now differentiating (1) with respect to x, we get % =y, =- —1%
b 4
. 33 - : d2y 24
Again differentiating with respect to x, we get T y2 = —3 -
X
3
_ (1+y%)2
We know that the radius of curvature p = ot
2
12 4 24 8
3
272
1+(-4) | : >
9 162 9(25)2 9(5Y 2 9 53 53 12
Therefore, p at (3, 4) = [ ——r —( +—) =—(—) =—(—) =—X— = _125
¥ s 8\ 9/ 8l9,) 883 8 33  8x3 24°



) Find the radius of curvature of the curve x = acos®0, y = asin®; at g -

3
. . A =acos” 0
Solution Here equation of the curve is . 3 }
y=asin" 0
dx 2 dy 2
Now 20 = 3a cos“O'sinb, 76 = 3asin“6OcosO
dy : 9
Therefore, y; = @_=%=_3asm29cf)se — _tan6. .
dx S5  3acos“0sinf |
d2 2 2 -
Now y, = __;’ - — 56620 ii_g=_se§x6 _t 5902_9 - 18] __
dx % -Bacos’0sin@ 3asinOcos? 6
/1 /2
Thusat9=z,y1=-ta.nz =—Tlandy2= = ;: T 11 1=4J§.
3081111008 4 30-\7—3;2 . 3_(1 |

3

We know that radius of curvature = p = LH——{I—)—
" iy

)

Henceat&:% p = (1:/1.) ha: 2J—=§E.
42 2

SIS



____D) Find the radius of curvature at any point (r, 6) for the curve r = a(l - cos0).
[NBH 2002, KH 2011]

Solution Here the equation of the curve is r = a(1 — cos6) | e (1D

Differentiating (1) with respect to 6, we ge 39 = ry = asinb.

d2r
Similarly, 27 ro = acosé.

3! | .5 3
. (r2 + r12)2 l:a?‘(l _c0s0)? +a’sin? 6]2
The radius of curvature p = ———— = — %
r+2n —rry a2(1 - cos8)? + 2a*sin”  —a(1 —cos)a cos 6

3
(2 20059)
2[1 2cost9+cos 0+ 2sin26- cosG+cos 0]

a(2—20089) a- 2\/—m— 2\/—0 ‘/;=-2—s/:‘?.;;
3 :

(3—3cos6)



Show that in any curve 3 2 3
o (dy ) o 1_dl fdy_dly s o L dxdy T30
i) p’:(-a;) +[¢_il) (i) _5_4132 ds ds® ds’ Ps ds” ds ds” ds

Solution We know for any curve y = flx),

/ Bf, d_ ‘ﬁ +(9) , so that (ds)? = (dn)? + (dy)? (see the adjoining figure).

ds
Also cosy= % siny= ds tanw— 9y and p = d—w- , where symbols have their usual meaning.



e (Y () (e Y, (dy
@ RH (dv) (dw) (ds de+[ds dw)

- (ST ()] -

=p2[sincep— < ,msl;r—E smw_ﬂ]

dy ds’ ds
= LHS [Proved]
(i) We know % = cosy/
2
= %—s-;- = —siny - 2’ [by differentiating with respect to s] e U)
1 -
== / 3 since siny
I — ]
ds p= dy
1_ i_2. [in magnitude] [Proved]
P

d%y dy ... (2)

1_ dzy
d%c , d%y
(iii) Dividing (1) by (2) we have, T, &? =—tany .

Differentiating both sides with respect to s, we obtain
d%y d%x d%x d

2' 53" 32 53 d
ds” ds° ds” ds” _ _gec2.,,._d%

3
o dzx_df’y_dzy.d % _ secly dy (cosw%) [by (2)]




Find the radius of curvature of the curve y = xe™* at the point where y is

19.)

maximum. [CH 2014, 2019; BH 2005, 2009, 2014, 2011; KH 2006]
Solution We first find the point on the curve y = xe~* s (1)

where y 1s maximum.
Differentiating (1) with respect to x, we get yy=-xe*+e*
Now y; =0 gives e (1 — x) = 0 = x = 1 [since e™* # 0]
Nowys =—e (1 —x)—e* =—e %2 -x)




e — l

_ 9o _1)=-- 0
Atx=1,y,=—¢ (2 1) 2 <

Thus y is maximum atx = 1.
Now, we have to find the radius of curvature at x = 1.

Atx=1,y1=0,y2=-—£-.
(1+52)? 14072
Now p = ™ .Henceatx=1,_p=_ I"%’ = e.



99 ) Prove that in any curve ";g 33,55 —3'3(1+3'1)
3’2

and show that at every point of a circle 3y,y,2 = ys(1 + y,2).

Solution We know that the radius of curvature p of a curve is given by
3

(1+57)2 [ dy . _d% ]
= ’ = =-_¢O
o Y1 e Y2 2
Now differentiating with respect to x, we obtain
1 3
1 2 2
dp _Y2° 2(1+y1)2 23’13’2 (1+y1) Y8 ii_g___@_di.=(1+yf)2x3y1yg (12+y1).y3
dx okt yz ds dx ¥2
BT ; W @ 2 3y1y2—(1+y1)y3 since.gs_,-;.l_!_(d_)zi] e
=>_d_‘§(1+y%)2 =(1+y1) X-—"""_""_yz dx de

= dp 3y1y2 y3(1+y1) [Proved]
ds 5
We further know that ther

constant). Hence
ii-P— = 0, for a Ci-rC]'e

ds
= yg(1 4+ y12). [Proved]

2 2=
By1y3 ¥+ ) —0 = 3y1¥2
= ¥3

adius of curvature p of a cu'cle is equal to its radius (which is



B) For the curve a®y = &3, show that the centre of curvature («, f) is given by

x

Solution a2y = x3 (given equation of the curve)

= a%y, = 3 (y1=%)

d2
=>-02}'2 = bx (yz = —%)

2
Thus, y; = E%—, Yo = %— _Hence the centre of curvature (@, B) is given by

a

2 2 4 2 x 9,4 e 9t

MR W R
Yo a 6x a a

a
2 9x%) a2 3 3x3 a? 5 x5 a2
}_t!l__y-l-( : )xﬁx B az+2az+6x A Ezz_"'a

Hence proved.



The tangents at two points P and Q on the cycloid
e x =a(0 - sinfb), y = a(l - cosd)

are at right angles. Show that if p; and p, be the radii of curvagyy, ;
these points, then p,% + p,2 = 16a2.

[VH YH 2019
Solution The radius of curvature p at any point 6 of the given cycloid can be Obtamed a
3 3 3
. (x ’2 +y’ ) B {a2(1—0089)2 +a?sin? 9}2 _ {a2 +a? (0052 6 +sin? 9)-—20,2 0036}2
xy"-y'x"  a?cosO(1-cosO)—asin2 6 a?(cos 0 — cos? 6 —sin2 0)
3 o\ 8
_ (2a?)20- cos9)2 _(20° x2sin? z) ~42 o ¢ 0
— = . in — = 4asin— [in magnitude]
~a’(1-c0s0)  -a%x2sin?8 g gZonpTiesing |
Let P and Q respectively represent points 6; and 6, on the cycloid.
The gradient of tangent at 0
Yy _  asinf a-2sin—g—cos% 0
According to the problem, the product of gradient at points 6; and 6, is — 1. .
6, % _ 6 6, 6 .0 ) 6 8,2
=> oot——é—-cot—2-— =-1 = cos-a--cos—2—-+sm—é—-sm—éz-=o = cos[—e—l-—-—zl) 0 = “2'" 9 2

}

|
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Now the radii of curvature at . .
respectively. P(6,) and Q(0,) are p =4asiné— and Pz =4asinY,

2 G1 2 2 6 6 __.E nce —= I
S— . 1
+16a“sin® =2 = 16a2 cos;2 22 +16a2 sin2 2 [Sl > 2 22 ]

Thus, piq‘ # p% =16a? sin
) 2

_ p?+p5=16a> [Proved]

m - pé’- pil be the radii of curvature at the extremities of any chord of the
cardioide r = a(1l + cosf), which passes through the pole, prove that

2 + 2 _ 16(12
P1+P2= —g - [VH 2019, 2015; BH 1999, CH 1998]

Solution Let P;OP; be a chord of the cardioide r = a(1 + cos6) and O be the pole. Let p;

and po be the radii of curvature of the cardioide at P; and Py respectively.
Let the vectorial angle of P; be 6. Then the vectorial angle of P, will be 7 + 6.
Now p; = radius of curvature at P,(6) - -

%\IZar [same result for the cardioide r = a(1 — cosf), which was proved earlier]

2 4a 0
8 5\/27a,-(z(1+cose) = 5 C0s5

. ta  (n+0) _4a_. 6
= p, = radius of curvature at Py (7 + 6) = 5008|557 |.F 5 Sing

6 2
Hence p? + pf = —5— - [Proved]



